The intactness of DNA is the keystone of genome-based clinical investigations, where rapid molecular detection of life-threatening bacteria is largely dependent on the isolation of high-quality DNA. Various protocols have been so far developed for genomic DNA isolation from bacteria, most of which have been claimed to be reproducible with relatively good yields of high-quality DNA. Nonetheless, they are not fully applicable to various types of bacteria, their processing cost is relatively high, and some toxic reagents are used. The routine protocols for DNA extraction appear to be sensitive to species diversity, and may fail to produce high-quality DNA from different species. Such protocols remain time-consuming and tedious, thus to resolve some of these impediments, we report development of a very simple, rapid, and high-throughput protocol for extracting of high-quality DNA from different bacterial species. Based upon our protocol, interfering phenolic compounds were removed from extraction using polyvinylpyrrolidone (PVP) and RNA contamination was precipitated using LiCI. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8) with high intactness of DNA. Subsequent evaluations were performed using some quality-dependent techniques (e.g., RAPD marker and restriction digestions). The isolated DNA from 9 different bacterial species confirmed the accuracy of this protocol which requires no enzymatic processing and accordingly its low-cost making it an appropriate method f r large-scale DNA isolation fromvarious bacterial species.
Kalia A, Rattan A, Chopra P. Kalia A, et al. Anal Biochem. 1999 Nov 1;275(1):1-5. doi: 10.1006/abio.1999.4259. Anal Biochem. 1999. PMID: 10542102
Tang JN, Zeng ZG, Wang HN, Yang T, Zhang PJ, Li YL, Zhang AY, Fan WQ, Zhang Y, Yang X, Zhao SJ, Tian GB, Zou LK. Tang JN, et al. J Microbiol Methods. 2008 Dec;75(3):432-6. doi: 10.1016/j.mimet.2008.07.014. Epub 2008 Jul 23. J Microbiol Methods. 2008. PMID: 18700153
Bonaïti C, Parayre S, Irlinger F. Bonaïti C, et al. Int J Food Microbiol. 2006 Mar 15;107(2):171-9. doi: 10.1016/j.ijfoodmicro.2005.08.028. Epub 2005 Nov 2. Int J Food Microbiol. 2006. PMID: 16269194
Oana K, Kawakami Y, Hayashi T, Ohnishi M. Oana K, et al. Microbiol Immunol. 2009 Jan;53(1):45-8. doi: 10.1111/j.1348-0421.2008.00084.x. Microbiol Immunol. 2009. PMID: 19161557
Li W, Raoult D, Fournier PE. Li W, et al. FEMS Microbiol Rev. 2009 Sep;33(5):892-916. doi: 10.1111/j.1574-6976.2009.00182.x. Epub 2009 May 6. FEMS Microbiol Rev. 2009. PMID: 19453749 Review.
Kumar KG, Husain R, Mishra A, Vikram N, Dwivedi DK, Pandey S, Singh A. Kumar KG, et al. 3 Biotech. 2024 May;14(5):137. doi: 10.1007/s13205-024-03982-z. Epub 2024 Apr 25. 3 Biotech. 2024. PMID: 38682095
Pourmollaei S, Farshbaf-Khalili A, Barzegari A, Bastani S, Babaie S, Fattahi A, Shahnazi M. Pourmollaei S, et al. Iran Biomed J. 2023 Jul 1;27(4):205-13. doi: 10.61186/ibj.3846. Iran Biomed J. 2023. PMID: 37525437 Free PMC article.
Lortou U, Panteris E, Gkelis S. Lortou U, et al. Microorganisms. 2022 Aug 4;10(8):1571. doi: 10.3390/microorganisms10081571. Microorganisms. 2022. PMID: 36013989 Free PMC article.
Amir Ebrahimi N, Salehi Jouzani G, Ebrahimi MA. Amir Ebrahimi N, et al. Iran J Microbiol. 2022 Apr;14(2):227-237. doi: 10.18502/ijm.v14i2.9192. Iran J Microbiol. 2022. PMID: 35765548 Free PMC article.
Dehghani J, Adibkia K, Movafeghi A, Pourseif MM, Omidi Y. Dehghani J, et al. Bioimpacts. 2020;10(4):259-268. doi: 10.34172/bi.2020.33. Epub 2020 Jul 13. Bioimpacts. 2020. PMID: 32983942 Free PMC article.